资源类型

期刊论文 153

年份

2024 1

2023 6

2022 13

2021 9

2020 11

2019 13

2018 7

2017 8

2016 11

2015 2

2014 8

2013 10

2012 5

2011 9

2010 6

2009 8

2008 4

2007 7

2006 2

2005 1

展开 ︾

关键词

核电厂 4

地震勘探 2

地震区划 2

地震波 2

地震灾害 2

微地震监测 2

抗震设计 2

3D层位 1

ACP1000 1

AP1000 1

TBM 隧洞 1

《联合国气候变化框架公约》(UNFCCC) 1

三图法 1

三维地震勘探 1

三维有限元模型 1

三维激发极化法 1

三维隔震 1

不良地质体 1

中国石油 1

展开 ︾

检索范围:

排序: 展示方式:

Application of BCP-2007 and UBC-97 in seismic vulnerability assessment of gravity designed RC buildings

Muhammad Usman ALI, Shaukat Ali KHAN, Muhammad Yousaf ANWAR

《结构与土木工程前沿(英文)》 2017年 第11卷 第4期   页码 396-405 doi: 10.1007/s11709-017-0436-4

摘要: Recent earthquakes in Pakistan (Kashmir 2005, Balochistan 2008, and Balochistan 2013) revealed the vulnerability of existing building stock and the deficiencies in the then prevalent Pakistan Seismic Code (PSC-86 (1986)). This study investigates, through an analytical framework, the seismic vulnerability of these and other such buildings, in accordance with the newly developed Building Code of Pakistan – Seismic Provisions 2007 (BCP-SP 07). Detailed failure mode is presented for buildings designed as per the new code. Collapse of structures is predicted for only 8% increase in PGA after moderate damage. A previously developed method, based on Eurocode-8 (2004), is used as baseline. A deficient reinforced concrete frame, typical to local building practices, is analyzed and assessed for vulnerability using the BCP- SP 07 (2007) framework. A comparison is drawn for the same building, based on Eurocode-8 (2004). Derived vulnerability curves show that the previous framework overestimated the damage and hence the vulnerability. Comparison of vulnerability parameters with previous studies show slight difference in performance of buildings.

关键词: Building Code of Pakistan     earthquake engineering     seismic effects     vulnerability assessment of buildings     vulnerability framework    

Seismic vulnerability assessment of water supply network in Tianjin, China

Yanxi CHEN,Zhiguang NIU,Jiaqi BAI,Yufei WANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第5期   页码 767-775 doi: 10.1007/s11783-014-0632-6

摘要: The water supply network (WSN) system is a critical element of civil infrastructure systems. Its complexity of operation and high number of components mean that all parts of the system cannot be simply assessed. Earthquakes are the most serious natural hazard to a WSN, and seismic risk assessment is essential to identify its vulnerability to different stages of damage and ensure the system safety. In this paper, using a WSN located in the airport area of Tianjin in northern China as a case study, a quantitative vulnerability assessment method was used to assess the damage that the water supply pipelines would suffer in an earthquake, and the finite element software ABAQUS and fuzzy mathematic theory were adopted to construct the assessment method. ABAQUS was applied to simulate the seismic damage to pipe segments and components of the WSN. Membership functions based on fuzzy theory were established to calculate the membership of the components in the system. However, to consider the vulnerability of the whole system, fuzzy cluster analysis was used to distinguish the importance of pipe segments and components. Finally, the vulnerability was quantified by these functions. The proposed methodology aims to assess the performance of WSNs based on pipe vulnerabilities that are simulated and calculated by the model and the mathematical method based on data of damage. In this study, a whole seismic vulnerability assessment method for a WSN was built, and these analyses are expected to provide necessary information for a mitigation plan in an earthquake disaster.

关键词: water supply network     seismic vulnerability assessment     finite element     fuzzy mathematics    

The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for

Tiago Miguel FERREIRA, João ESTÊVÃO, Rui MAIO, Romeu VICENTE

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 609-622 doi: 10.1007/s11709-020-0623-6

摘要: This paper discusses the adoption of Artificial Intelligence-based techniques to estimate seismic damage, not with the goal of replacing existing approaches, but as a mean to improve the precision of empirical methods. For such, damage data collected in the aftermath of the 1998 Azores earthquake (Portugal) is used to develop a comparative analysis between damage grades obtained resorting to a classic damage formulation and an innovative approach based on Artificial Neural Networks (ANNs). The analysis is carried out on the basis of a vulnerability index computed with a hybrid seismic vulnerability assessment methodology, which is subsequently used as input to both approaches. The results obtained are then compared with real post-earthquake damage observation and critically discussed taking into account the level of adjustment achieved by each approach. Finally, a computer routine that uses the ANN as an approximation function is developed and applied to derive a new vulnerability curve expression. In general terms, the ANN developed in this study allowed to obtain much better approximations than those achieved with the original vulnerability approach, which has revealed to be quite non-conservative. Similarly, the proposed vulnerability curve expression was found to provide a more accurate damage prediction than the traditional analytical expressions.

关键词: Artificial Neural Networks     seismic vulnerability     masonry buildings     damage estimation     vulnerability curves    

Seismic fragility assessment of revised MRT buildings considering typical construction changes

Rakesh DUMARU, Hugo RODRIGUES, Humberto VARUM

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 241-266 doi: 10.1007/s11709-019-0560-4

摘要: The present study investigates the vulnerability assessment of the prototype revised Mandatory Rule of Thumb (MRT) buildings initially designed and detailed for three storeys bare frame building; later modified through variable number of storeys (three, four, and five) and different arrangement of infill walls (bare frame, soft-storey, irregular infilled, and fully infilled). The application of infill walls increases the fundamental frequencies, stiffness, and maximum strength capacity, but reduces the deformation capability than the bare frame building. The vulnerability was also reduced through infill walls, where the probability of exceeding partial-collapse and collapse damage reduced by 80% and 50%, respectively. Furthermore, the increased in storeys (three to five) also increases the failure probability, such that partial-collapse and collapse for fully infilled increases by almost 55% and 80%, respectively. All obtained results and discussions concluded that the structural sections and details assigned for MRT building is not sufficient if considered as bare frame and soft-storey. And increase in number of storeys causes building highly vulnerable although the infill walls were considered.

关键词: mid-rise buildings     revised NBC 205: 2012     masonry infill walls     configurations of infill walls     vulnerability assessment and inter-storey drift    

Hazard and vulnerability evaluation of water distribution system in cases of contamination intrusion

Kunlun XIN, Tao TAO, Yong WANG, Suiqing LIU

《环境科学与工程前沿(英文)》 2012年 第6卷 第6期   页码 839-848 doi: 10.1007/s11783-012-0409-8

摘要: In this paper, it proposed an index system for hazard and vulnerability evaluations of water distribution networks, based on the simulation of contamination events caused by pollutant injections at different junctions. It attempted to answer the following two questions in the case of contamination events: 1) Which are the most hazardous junctions? 2) Which are the most vulnerable junctions? With EPANET toolkit, it simulated the propagation of the contaminant, and calculated the peak concentration of the contaminant and mass delivered at different nodes. According to types of consumers, different weights were assigned to the consumer nodes for assessing the influence of the contaminant on the consumers. Using the method proposed herein, both the hazard index and vulnerability index were calculated for each node in the pipe network. The presented method was therefore applied to the water network of the city of Zhenjiang, which contains two water plants, two booster pump stations with storage tanks. In conclusion, the response time, the relationships between the peak concentration of contaminant and the total absorption are the most important factors in hazard and vulnerability evaluation of the water distribution network.

关键词: water distribution network     hazard     vulnerability     contaminant accident    

极区海洋碳池变化性和脆弱性及其探测工程技术

陈立奇

《中国工程科学》 2009年 第11卷 第10期   页码 79-85

摘要:

利用中国南极考察和北极科学考察在南大洋和西北冰洋开展的连续围绕大气和表层海水pCO2及其相关参数观测和海气CO2通量评估,阐述南大洋和西北冰洋碳池的年际变化性,分析探讨其脆弱性,并展望了极区海洋碳池探测工程技术。

关键词: 碳循环     变化性和脆弱性     南大洋     西北冰洋     探测工程技术    

Effect of strata restraint on seismic performance of prefabricated sidewall joints in fabricated subway

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 763-779 doi: 10.1007/s11709-023-0917-6

摘要: A disadvantage of the conventional quasi-static test method is that it does not consider the soil restraint effect. A new method to test the seismic performance of prefabricated specimens for underground assembled structures is proposed, which can realistically reflect the strata restraint effect on the underground structure. Laboratory work combined with finite element (FE) analysis is performed in this study. Three full-scale sidewall specimens with different joint forms are designed and fabricated. Indices related to the seismic performance and damage modes are analyzed comprehensively to reveal the mechanism of the strata restraint effect on the prefabricated sidewall components. Test results show that the strata restraint effect effectively improves the energy dissipation capacity, load-bearing capacity, and the recoverability of the internal deformation of the precast sidewall components. However, the strata restraint effect reduces the ductility of the precast sidewall components and aggravates the shear and bending deformations in the core region of the connection joints. Additionally, the strata restraint effect significantly affects the seismic performance and damage mode of the prefabricated sidewall components. An FE model that can be used to conduct a seismic performance study of prefabricated specimens for underground assembled structures is proposed, and its feasibility is verified via comparison with test data.

关键词: underground structures     precast sidewall specimen     seismic test method     bearing capacity     energy dissipation capacity     plastic deformation    

Effects of green roof damping and configuration on structural seismic response

《结构与土木工程前沿(英文)》   页码 1133-1144 doi: 10.1007/s11709-023-0959-9

摘要: Sustainable structures are critical for addressing global climate change. Hence, their structural resilience or ability to recover from natural events must be considered comprehensively. Green roofs are a widely used sustainable feature that improve the environment while providing excellent occupant amenity. To expand their usage, their inherent damping and layout sensitivity to seismic performance are investigated in this study. The soil of a green roof can serve as a damper to dissipate the energy generated by earthquakes or other dynamic events. Results of preliminary analysis show that a green roof soil can increase localized damping by 2.5% under both dry and saturated conditions. Based on these findings, nonlinear time-history analyses are conducted on a three-story building in SAP2000 to monitor the structural behavior with and without a green roof. The increased damping in the green roof soil is beneficial to the structural performance, i.e., it reduces the building displacement and acceleration by 10% and 12%, respectively. Additionally, certain configurations are more effective and beneficial to the structural response than others, which suggests the possibility of design optimization. Based on the findings of this study, new methods of modeling and considering green roofs in structural design are established.

关键词: green infrastructure     green roof     structural resilience     seismic design    

Performance-based seismic assessment of a historical masonry arch bridge: Effect of pulse-like excitations

《结构与土木工程前沿(英文)》   页码 855-869 doi: 10.1007/s11709-023-0972-z

摘要: Seismic analysis of historical masonry bridges is important for authorities in all countries hosting such cultural heritage assets. The masonry arch bridge investigated in this study was built during the Roman period and is on the island of Rhodes, in Greece. Fifteen seismic records were considered and categorized as far-field, pulse-like near-field, and non-pulse-like near-field. The earthquake excitations were scaled to a target spectrum, and nonlinear time-history analyses were performed in the transverse direction. The performance levels were introduced based on the pushover curve, and the post-earthquake damage state of the bridge was examined. According to the results, pulse-like near-field events are more damaging than non-pulse-like near-field ground motions. Additionally the bridge is more vulnerable to far-field excitations than near-field events. Furthermore, the structure will suffer extensive post-earthquake damage and must be retrofitted.

关键词: masonry arch bridges     seismic behavior     modal properties     pulse-like records     nonlinear time history analysis    

Variability of waste copper slag concrete and its effect on the seismic safety of reinforced concrete

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 117-130 doi: 10.1007/s11709-021-0788-7

摘要: Proven research output on the behavior of structures made of waste copper slag concrete can improve its utilization in the construction industry and thereby help to develop a sustainable built environment. Although numerous studies on waste copper slag concrete can be found in the published literature, no research has focused on the structural application of this type of concrete. In particular, the variability in the strength properties of waste copper slag concrete, which is required for various structural applications, such as limit state design formulation, reliability-based structural analysis, etc., has so far not attracted the attention of researchers. This paper quantifies the uncertainty associated with the compressive-, flexural- and split tensile strength of hardened concrete with different dosages of waste copper slag as fine aggregate. Best-fit probability distribution models are proposed based on statistical analyses of strength data generated from laboratory experiments. In addition, the paper presents a reliability-based seismic risk assessment of a typical waste copper slag incorporated reinforced concrete framed building, considering the proposed distribution model. The results show that waste copper slag can be safely used for seismic resistant structures as it results in an identical probability of failure and dispersion in the drift demand when compared with a conventional concrete building made of natural sand.

关键词: waste copper slag     quantification of variability     goodness-of-fit test     seismic risk assessment     PSDM    

Efficiency of scalar and vector intensity measures for seismic slope displacements

Gang WANG

《结构与土木工程前沿(英文)》 2012年 第6卷 第1期   页码 44-52 doi: 10.1007/s11709-012-0138-x

摘要: Ground motion intensity measures are usually used to predict the earthquake-induced displacements in earth dams, soil slopes and soil structures. In this study, the efficiency of various single ground motion intensity measures (scalar ) or a combination of them (vector ) are investigated using the PEER-NGA strong motion database and an equivalent-linear sliding-mass model. Although no single intensity measure is efficient enough for all slope conditions, the spectral acceleration at 1.5 times of the initial slope period and Arias intensity of the input motion are found to be the most efficient scalar for flexible slopes and stiff slopes respectively. Vector can incorporate different characteristics of the ground motion and thus significantly improve the efficiency over a wide range of slope conditions. Among various vector considered, the spectral accelerations at multiple spectral periods achieve high efficiency for a wide range of slope conditions. This study provides useful guidance to the development of more efficient empirical prediction models as well as the ground motion selection criteria for time domain analysis of seismic slope displacements.

关键词: seismic slope displacements     intensity measures     empirical prediction    

Experiment and calculation on seismic behavior of RC composite core walls with concealed steel truss

Wanlin CAO , Weihua CHANG , Changjun ZHAO , Jianwei ZHANG ,

《结构与土木工程前沿(英文)》 2009年 第3卷 第3期   页码 255-261 doi: 10.1007/s11709-009-0043-0

摘要: To improve the seismic performance of reinforced concrete core walls, reinforced concrete composite core walls with concealed steel truss were proposed and systemically investigated. Two 1/6 scale core wall specimens, including a normal reinforced concrete core wall and a reinforced concrete composite core wall with concealed steel truss, were designed. The experimental study on seismic performance under cyclic loading was carried out. The load-carrying capacity, stiffness, ductility, hysteretic behavior and energy dissipation of the core walls were discussed. The test results showed that the seismic performance of core walls is improved greatly by the concealed steel truss. The calculated results were found to agree well with the actual measured ones.

关键词: reinforced concrete     steel truss     core walls     seismic performance    

A step forward towards a comprehensive framework for assessing liquefaction land damage vulnerability

Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD, Wen-Jing GU

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1476-1491 doi: 10.1007/s11709-020-0670-z

摘要: The unprecedented liquefaction-related land damage during earthquakes has highlighted the need to develop a model that better interprets the liquefaction land damage vulnerability (LLDV) when determining whether liquefaction is likely to cause damage at the ground’s surface. This paper presents the development of a novel comprehensive framework based on select case history records of cone penetration tests using a Bayesian belief network (BBN) methodology to assess seismic soil liquefaction and liquefaction land damage potentials in one model. The BBN-based LLDV model is developed by integrating multi-related factors of seismic soil liquefaction and its induced hazards using a machine learning (ML) algorithm-K2 and domain knowledge (DK) data fusion methodology. Compared with the C4.5 decision tree-J48 model, naive Bayesian (NB) classifier, and BBN-K2 ML prediction methods in terms of overall accuracy and the Cohen’s kappa coefficient, the proposed BBN K2 and DK model has a better performance and provides a substitutive novel LLDV framework for characterizing the vulnerability of land to liquefaction-induced damage. The proposed model not only predicts quantitatively the seismic soil liquefaction potential and its ground damage potential probability but can also identify the main reasons and fault-finding state combinations, and the results are likely to assist in decisions on seismic risk mitigation measures for sustainable development. The proposed model is simple to perform in practice and provides a step toward a more sophisticated liquefaction risk assessment modeling. This study also interprets the BBN model sensitivity analysis and most probable explanation of seismic soil liquefied sites based on an engineering point of view.

关键词: Bayesian belief network     liquefaction-induced damage potential     cone penetration test     soil liquefaction     structural learning and domain knowledge    

Assessment of robustness of structures: Current state of research

Colin BRETT, Yong LU

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 356-368 doi: 10.1007/s11709-013-0220-z

摘要: The concept of structural robustness and relevant design guidelines have been in existence in the progressive collapse literature since the 1970s following the partial collapse of the Ronan Point apartment building; however, in the more general context, research on the evaluation and enhancement of structural robustness is still relatively limited. This paper is aimed to provide a general overview of the current state of research concerning structural robustness. The focus is placed on the quantification and the associated evaluation methodologies, rather than specific measures to ensure prescriptive robustness requirements. Some associated concepts, such as redundancy and vulnerability, will be discussed and interpreted in the general context of robustness such that the corresponding methodologies can be compared quantitatively using a comparable scale. A framework methodology proposed by the authors is also introduced in line with the discussion of the literature.

关键词: structural robustness     abnormal exposure     vulnerability     collapse     consequence    

Finite element analysis on the seismic behavior of side joint of Prefabricated Cage System in prefabricated

Yunlin LIU, Shitao ZHU

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1095-1104 doi: 10.1007/s11709-019-0538-2

摘要: The Prefabricated Cage System (PCS) has the advantages of high bearing capacity and good ductility. Meanwhile, it is convenient for factory production and it is beneficial to the cost savings, construction period shortening. Side joint is the weak region of PCS concrete frame and has great influence on seismic behavior of the whole structure. Thus systematically study on the seismic behavior of PCS concrete side joint is necessary. This paper presents a finite element study on behavior of the side joint under seismic loading. In the finite element model, PCS concrete and the reinforced concrete (RC) is modeled by the solid element and fiber-beam element, respectively. The numerical results is compared with the experimental results and it is found that the results of model based on fiber-beam element is in better agreement with the experimental results than solid element model. In addition, the overall seismic behavior of the side joints in PCS concrete is better than that of the RC with the same strength.

关键词: PCS concrete side joint     numerical simulation     fiber-beam element joint model     solid element joint model     seismic behavior    

标题 作者 时间 类型 操作

Application of BCP-2007 and UBC-97 in seismic vulnerability assessment of gravity designed RC buildings

Muhammad Usman ALI, Shaukat Ali KHAN, Muhammad Yousaf ANWAR

期刊论文

Seismic vulnerability assessment of water supply network in Tianjin, China

Yanxi CHEN,Zhiguang NIU,Jiaqi BAI,Yufei WANG

期刊论文

The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for

Tiago Miguel FERREIRA, João ESTÊVÃO, Rui MAIO, Romeu VICENTE

期刊论文

Seismic fragility assessment of revised MRT buildings considering typical construction changes

Rakesh DUMARU, Hugo RODRIGUES, Humberto VARUM

期刊论文

Hazard and vulnerability evaluation of water distribution system in cases of contamination intrusion

Kunlun XIN, Tao TAO, Yong WANG, Suiqing LIU

期刊论文

极区海洋碳池变化性和脆弱性及其探测工程技术

陈立奇

期刊论文

Effect of strata restraint on seismic performance of prefabricated sidewall joints in fabricated subway

期刊论文

Effects of green roof damping and configuration on structural seismic response

期刊论文

Performance-based seismic assessment of a historical masonry arch bridge: Effect of pulse-like excitations

期刊论文

Variability of waste copper slag concrete and its effect on the seismic safety of reinforced concrete

期刊论文

Efficiency of scalar and vector intensity measures for seismic slope displacements

Gang WANG

期刊论文

Experiment and calculation on seismic behavior of RC composite core walls with concealed steel truss

Wanlin CAO , Weihua CHANG , Changjun ZHAO , Jianwei ZHANG ,

期刊论文

A step forward towards a comprehensive framework for assessing liquefaction land damage vulnerability

Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD, Wen-Jing GU

期刊论文

Assessment of robustness of structures: Current state of research

Colin BRETT, Yong LU

期刊论文

Finite element analysis on the seismic behavior of side joint of Prefabricated Cage System in prefabricated

Yunlin LIU, Shitao ZHU

期刊论文